SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) for **MATHEMATICS** SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) for MATHEMATICS Grade K # SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) FOR MATHEMATICS SERIES YABISÍ (SANTILLANA USA) – KINDER | CCSS | Teacher's Guide | Student Edition | Student Workbook | |--|---------------------------------------|--|---------------------------------------| | Counting and Cardinality | | | | | K.CC | | | | | Know number names and the count | | | | | sequence. | | | | | 1. Count to 100 by ones and by tens. | 32-34, 38-40, 42-43, 46-49, 51, | 16-19, 22-24, 30-32, 35, 37. 39, 46- | 16-19, 22, 24-25, 30, 32, 37, 53, 55- | | | 5355, 62-70, 72-73, 75-76, 78-79, | 51, 53, 56-57, 59-60, 62-63, 67-69, | 56, 62, 76, 95, 102-106, 130-131, | | | 83-84, 92-94, 98-99, 102, 115, 119, | 76, 78, 82, 84, 86, 104-109, 120, 131- | 146-149 | | | 120-125, 136, 147-148, 159 | 132, 143 | | | | | | | | | (Note: Count to 30) | (Note: Count to 30) | (Note: Count to 30) | | 2. Count forward beginning from a given | 55, 60-61, 70-71, 77, 92, 98, 100- | 39, 44-45, 55, 61, 77, 84-85 | 44-45, 60, 76, 88 | | number within the known sequence | 101, 103, 107, 109 | 39, 44-43, 33, 01, 77, 04-03 | 44-43, 00, 70, 80 | | (instead of having to begin at 1). | 101, 103, 107, 107 | | | | (mstead of naving to begin at 1). | | | | | 3. Write numbers from 0 to 20. Represent a | 32-34, 38-39, 42-43, 46-50, 51, 53, | 16-19, 22-23, 26-27, 29-30, 32-34, | 16-19, 22-23, 25, 27, 31,33-35, 44- | | number of objects with a written numeral | 61-62, 64-54, 68, 70, 72, 75-78, 80, | 35, 3745-46, 48-49, 52, 54-56, 59-62, | 45, 47, 59, 52-53, 55, 57, 60-63, 68, | | 0-20 (with 0 representing a count of no | 83, 85, 92, 94 98, 100, 105, 108, | 64, 67, 76, 78, 82, 84, 86, 89, 92, 132, | 70-73, 75, 77, 81, 83, 85, 88-89, 91, | | objects). | 151-152, 154-157, 159-165 | 135-136, 138-141, 143-149 | 105, 134-135, 137-138, 140, 142, | | | | | 144, 150-156 | | | | | | | Count to tell the number of objects. | | | | | 4. Understand the relationship between | 32-35, 38-40, 42-43, 46-51, 55, 62, | 16-19, 22-23, 26-27, 30-35, 39, 46, | 16-19, 22, 24-25, 27, 30, 33, 53, 55, | | numbers and quantities; connect counting | 64, 69-73, 76-80, 82-83, 94, 98, 100, | 48, 53, 55-56, 60-64, 66-67, 78, 82- | 84, 90, 138-139 | | to cardinality. | 106, 109, 124, 136-137, 154-155, | 84, 90, 120-121, 131, 138-139 | | | a. When counting objects, say the number | 156-157 | | | | names in the standard order, pairing each | | | | | object with one and only one number name | | | | | and each number name with one and only | | | | # SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) FOR MATHEMATICS SERIES YABISÍ (SANTILLANA USA) – KINDER | CCSS | Teacher's Guide | Student Edition | Student Workbook | |--|--|--|--| | one object. b. Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. c. Understand that each successive number name refers to a quantity that is one larger. | | | | | 5. Count to answer "how many?" questions about as many as 20 thing arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1-20, count out that many objects. | 62-64, 68, 72, 7-80, 82-83, 88-90, 92, 94, 100, 106, 109, 128-, 154- 157, 160, 162-164 | 46-48, 52, 56, 61-64, 66-67, 72-74, 76, 78, 84, 90112, 138-141, 144, 146-148 | 52, 64-65, 68, 70-71, 73, 84, 110-
111, 140-141 | | Compare numbers. 6. Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects In another group, e.g., by using matching and counting strategies. | 88-89, 90-91, 113, 126 | 72-75, 110 | 70-71, 108-109 | | 7. Compare two numbers between 1 and 10 presented as written numerals. | 60-61, 88, 90 | 44-45, 72, 74 | 44-45, 70-74 | | CCSS | Teacher's Guide | Student Edition | Student Workbook | |---|---|---|--| | Operations and Algebraic | | | | | Thinking | | | | | K.OA | | | | | Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from. | | | | | 1. Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. | 50-51, 53, 78, 80-81, 99, 110, 113, 130-131, 135, 155-157, 160-163, 165 | 34-35, 37, 94, 97, 114-115, 119, 139-
141, 144-147 | 34-35, 92-93, 112-113, 142, 145, 150-157 | | 2. Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. | 80-81, 108, 110-111, 120, 132-133, 135, 145, 161 | 64-65, 116-117, 119, 129, 145 | 64-65, 114-115 | | 3. Decompose numbers less than or equal to 10 into pairs in one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5 = 2 + 3$ and $5 = 4 + 1$). | 156, 158 | 140, 142 | 142-143 | | 4. For any number from 1 to 9, find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation. | 158 | 142 | 142 | # SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) FOR MATHEMATICS SERIES YABISÍ (SANTILLANA USA) – KINDER | 5. Fluently add and subtract within 5. | 108, 122, 124 | 108 | 107, 142-143, 145 | |--|---------------|-----|-------------------| | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | |---|---|--|---| | Number and Operations in | | | | | Base Ten | | | | | K.NBT | | | | | Work with numbers 11-19 to gain foundations for place value. | | | | | 1. Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (e.g., 18 = 10 + 8); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones. | 78, 99, 101, 124, 157, 159 | 83, 141, 143 | 145 | | Measurement and Data | | | | | K.MD | | | | | Describe and compare measurable attributes. | | | | | 1. Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. | 36, 74, 96, 104, 129, 142-143, 144-
146, 148-149, 150-151, 152-153 | 20, 37, 58, 80, 88, 113, 126-128, 130, 132-137 | 20-21, 78-79, 86-87, 124-129, 132-
137 | | 2. Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as | 36, 74, 96, 104, 142-144 | 20, 58, 80, 88, 126-128 | 20-21, 58-58, 78, 86-87, 124-127 | | CCSS | Teacher's Guide | Student Edition | Student Workbook | |--|---|--|--| | taller/shorter. | | | | | Classify objects and count the number of objects in each category. | | | | | 3. Classify objects into given categories; count the numbers of objects in each category and sort the categories by count. | 26-31, 34-35, 38-40, 42-44, 46, 48-
52, 62-64, 67, 73-74, 82-83, 88-90,
95, 103, 107-108, 111-113, 126,
134, 161 | 10, 12-15, 18-19, 22-24, 26-27, 30, 32-36, 47, 49, 51, 66-67, 72-74, 91, 95-96, 118, 145 | 6-7, 10-15, 18, 22, 32, 63, 70-71, 79, 82 | | Geometry | | | | | K.G | | | | | Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres.) | | | | | 1. Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as <i>above</i> , <i>below</i> , <i>beside</i> , <i>in front of</i> , <i>behind</i> , and <i>next to</i> . | 44, 53, 56-59, 66-67, 86-87, 116-
117, 138 | 28, 37, 40-43, 50-51, 70-71, 100, 122 | 28-29, 36-37, 40-43, 50-51, 66-67,
82, 116-117 | |
2. Correctly name shapes regardless of their orientation or overall size. | 27, 57, 71, 87, 117, 136-137, 165 | 11, 41, 71, 101, 120-121, 149 | 8-9, 38, 48, 68-69, 8498, 100, 110, 152-153, 155, 159, 161 | | 3. Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid"). | 137, 139-141 | 123-125 | 118-123 | | Analyze, compare, create, and compose shapes. | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | |---|----------------------------------|----------------------------------|------------------| | 4. Analyze and compare two- and three-
dimensional shapes, in different sizes, and
orientations, using informal language to
describe their similarities, differences,
parts (e.g., number of sides and
vertices/"corners") and other attributes
(e.g., having sides of equal length). | 27, 37, 57, 87, 97, 117-119, 127 | 11, 21, 41, 71, 81, 101-103, 111 | 8-9, 96-99 | | 5. Model shapes in the world by building shapes from components (e.g., sticks and class balls) and drawing shapes. | 27,57 | 41 | 39 | | 6. Compose simple shapes to form larger shapes. For example, "Can you join these two triangles with full sides touching to make a rectangle?" | 87, 118-119 | | 98, 100 | | Kindergarten Deleted Content | | | | | Identify ordinal positions through 31st. | 120-121 | 104-105 | 102-103 | | Analyze simple repeating and growing relationships to extend patterns. | 97 | 81 | 161-173 | | Use the directional words <i>left</i> and <i>right</i> to describe movement. | 59 | 43 | 42-43 | | Identify a penny, a nickel, a dime, a quarter, and a dollar and the value of each. | 154-159 | 138-143 | 138-149 | | Identify rulers, yardsticks, and tape | 142-143, 146-153 | 130-137, 126-127 | 128-137, 124-125 | # SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) FOR MATHEMATICS SERIES YABISÍ (SANTILLANA USA) – KINDER | CCSS | Teacher's Guide | Student Edition | Student Workbook | |---|-----------------|-----------------|------------------| | measures as devices used to measure length; scales and balances as devices used to measure weight; calendars and analog and digital clocks as devices used to measure time; and digital and standard thermometers as devices used to measure temperature. | | | | SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) for MATHEMATICS Grade 1 # SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) FOR MATHEMATICS SERIES YABISÍ (SANTILLANA USA) – FIRST GRADE | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|--|---|------------------|------------------------| | Operations and Algebraic | | | | | | Thinking | | | | | | 1.0A | | | | | | Represent and solve problems involving addition and | | | | | | subtraction. | 20 40 40 40 40 50 50 50 50 | 40.00.07.00.07.40.44.45.40.50 | 20.04.44 | Y 44 | | 1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. | 29, 42-43, 48-49, 50-53, 56-5, 61-62, 65, 69-71, 74, 79-81, 87, 99, 102, 07, 111-112, 122, 176-177 | 13, 26-27, 33-37, 40-41, 45-46, 53-
55, 58, 63-65, 67, 83, 96, 91, 96,
106, 160-161 | 20-21, 41 | Juego y repaso: 14 | | 2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. | 63, 116-118, 125, 126 | 47, 100-103, 109-110 | 40-41 | Juego y repaso: 9 | | Understand and apply properties of operations and the | | | | | # SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) FOR MATHEMATICS SERIES YABISÍ (SANTILLANA USA) – FIRST GRADE | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|---------------------------------------|---------------------------------------|---------------------------------|------------------------| | relationship between addition | | | | | | and subtraction. | | | | | | 3. Apply properties of operations as | 52, 55, 58, 62, 65, 88, 118-119, 123, | 42, 46, 48, 72, 102-103, 107, 109 | 14, 24, 39 | | | strategies to add and subtract.3 | 125 | | | | | Examples: | | | | | | If $8 + 3 = 11$ is known, then $3 + 8 = 11$ | | | | | | is also known. (Commutative | | | | | | property of addition.) | | | | | | To add 2 + 6 + 4, the second two numbers can be added to make a | | | | | | ten, so $2 + 6 + 4 = 2 + 10 = 12$. | | | | | | (Associative property of addition.) | | | | | | (11330ctative property of dualition.) | | | | | | 4. Understand subtraction as an | 72-73, 75, 112-113 | 96-96 | 36 | | | unknown-addend problem. For | | | | | | example, subtract 10 – 8 by finding | | | | | | the number that makes 10 when | | | | | | added to 8. | | | | | | Add and subtract within 20. | | | | | | 5. Relate counting to addition and | 28-30, 45, 50-51, 53-54, 58, 68, 70, | 13, 29, 34-35, 37-38, 42, 52, 54, 67, | 12-13, 16-17, 21-23, 28, 40, 67 | | | subtraction (e.g., by counting on 2 | 85, 88, 90-91, 101, 108-110, 112, | 72, 74-75, 85, 92-94, 96, 103, 111, | | | | to add 2). | 119, 127, 129, 190-191 | 113, 174-175 | | | | | | | | | | 6. Add and subtract within 20, | 51, 53-55, 60, 65, 70, 76, 89, 98-99, | 35, 37-39, 44, 49, 54, 60, 82-83, 85, | 14-18, 20-23, 25, 33, 37-40 | Juego y repaso: 2-3, 5 | | demonstrating fluency for addition | 101, 110, 114-117, 119, 124-125 | 98-101, 103, 108-109 | | | | and subtraction within 10. Use | | | | | | strategies such as counting on; | | | | | | making ten (e.g., $8 + 6 = 8 + 2 + 4 =$ | | | | | | 10 + 4 = 14); decomposing a | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|--|---------------------------------------|-------------------|------------------------| | number leading to a ten (e.g., $13 - 4$ = $13 - 3 - 1 = 10 - 1 = 9$); using the relationship between addition and subtraction (e.g., knowing that $8 + 4$ = 12 , one knows $12 - 8 = 4$); and creating equivalent but easier or known sums (e.g., adding $6 + 7$ by creating the known equivalent $6 + 6 + 1 = 12 + 1 = 13$). | | | | | | Work with addition and subtraction equations. | | | | | | 7. Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? $6 = 6$, $7 = 8 - 1$, $5 + 2 = 2 + 5$, $4 + 1 = 5 + 2$. | 50-51, 72-73, 82, 124 | 34-35, 56-57, 66, 108 | | | | 8. Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 + ? = 11$, $5 = \boxed{2} - 3$, $6 + 6 = \boxed{2}$. | 53, 55, 58-59, 64, 73, 84, 110-111,
177 | 37, 39, 42-43, 48, 57, 68, 94-95, 161 | 14-15, 17, 19, 36 | Juego y repaso: 6-7 | # SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) FOR MATHEMATICS SERIES YABISÍ (SANTILLANA USA) – FIRST GRADE | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|--|---|------------------|-------------------------| | Number and Operations in | | | | | | Base Ten 1.NBT | | | | | | Extend the counting sequence. | | | | | | 1. Count to 120, starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral. | 24-35, 46, 48-49, 86-88, 92-94, 186-187 (Note: Count to 100) | 8-19, 30, 32-33, 70-72, 76-78, 160-
161, 170-171 | 6-11, 30-31, 64 | Juego y repaso: 11 | | Understand place value. | | | | | | 2. Understand that the two digits of a two-digit number represent amounts of tens and ones. Understand the following as special cases: a. 10 can be
thought of as a bundle of ten ones — called a "ten." b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. c. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones). | 90, 124, 178-179-183, 185, 188-189, 198 | 108, 162-167, 169, 172-173, 182 | 60-63, 65-66, 69 | Juego y repaso: 7-8, 10 | | 3. Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, | 36 (one digit)
37 (one- and two-digit)
96-97, 194-195 | 20 (one digit)
21 (one- and two-digit)
80-81, 178-179 | 32, 69 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|------------------|------------------|------------------|------------------------| | and <. | | | | | | Use place value understanding and properties of operations to add and subtract. | | | | | | 4. Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. | 180-185, 192-193 | 164-169, 176-177 | 62, 68, 70 | Juego y repaso: 8, 11 | | 5. Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used. | 183 | | | Juego y repaso: 10 | | 6. Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models | N/A | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|---------------------------------|---------------------------------|------------------|------------------------| | or drawings and strategies based | | | | | | on place value, properties of operations, and/or the relationship | | | | | | between addition and subtraction; | | | | | | relate the strategy to a written method and explain the reasoning | | | | | | used. | | | | | | Management and Data | | | | | | Measurement and Data 1.MD | | | | | | Measure lengths indirectly and | | | | | | by iterating length units. | 104 105 144 154 | 110 110 05 105 | 45 50 50 | | | 1. Order three objects by length; compare the lengths of two objects | 134-135, 141, 151 | 118-119, 25, 135 | 45, 52-53 | | | indirectly by using a third object. | | | | | | 2. Express the length of an object as | 128-129, 132-133, 135-141, 152, | 112-113, 116-117, 119-123, 136, | 43-44, 46-48, 53 | | | a whole number of length units, by | 155 | 139 | 13 11, 10 10, 33 | | | laying multiple copies of a shorter | | | | | | object (the length unit) end to end; understand that the length | | | | | | measurement of an object is the | | | | | | number of same-size length units that span it with no gaps or | | | | | | overlaps. Limit to contexts where | | | | | | the object being measured is | | | | | | spanned by a whole number of length units with no gaps or | | | | | | overlaps. | | | | | | Tell and write time. | | | | | # SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) FOR MATHEMATICS SERIES YABISÍ (SANTILLANA USA) – FIRST GRADE | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|---|---|------------------|------------------------| | 3. Tell and write time in hours and half-hours using analog and digital clocks. | 205, 210-213, 224, 226 | 189, 194-197, 208, 210 | 74-75, 76, 80 | | | Represent and interpret data. | | | | | | 4. Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. | 139-140, 152-153, 173, 227, 273, 275-283, 290 | 136-137, 123-124, 157, 211, 257, 260-267, 274 | 98-100, 102-103 | Juego y repaso: 15 | | Geometry 1.G | | | | | | Reason with shapes and their attributes. | | | | | | 1. Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes. | 158, 165-166, 172-173, 175, 251,
268 | 142, 150, 156-157, 159, 235, 252 | 96 | | | 2. Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right | 165, 225, 252-255, 266, 272-273 | 209, 236-239, 250, 256-257 | 90-91 | Juego y repaso: 16-23 | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|-----------------|-----------------|------------------|------------------------| | rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape. | | | | | | 3. Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares. | 156-168, 172 | 140-152, 156 | 54-59 | | | Grade 1 Deleted Content | | | | | | Use estimation to determine the approximate number of objects in a set of 20 to 100 objects. | 36 | | | | | Represent quantities in word form through ten. | 44 | 13, 28, 87 | | | | Recognize whole-number words that correspond to numerals through twenty. | 31 | 49 | | | | Analyze the magnitude of digits through 999 on the basis of their | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------|-----------------|------------------|------------------------| | place values. | | | | | | Analyze numeric relationship to complete and extend simple patterns. | 187, 191 | 171, 175 | 64, 67 | | | Classify numbers as odd or even. | | | | | | Classify change over time as quantitative or qualitative. | 206-207 | 190-191 | | | | Identify the three-dimensional geometric shapes prism, pyramid, and cone. | 251-255 | 235-239 | 90-91 | | | Analyze two-dimensional shapes circle, square, triangle, and rectangle. | 256-257 | 240-241 | 91 | Juego y repaso: 12 | | Identify a line of symmetry. | 262-263 | 246-247 | 94 | | | Use the positional and directional terms north, south, east, and west to describe location and movement. | | | | | | Use a counting procedure to determine the value of a collection of pennies, nickels, dimes and quarters totaling less than a dollar. | 235 | 219 | 82, 84-85 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------------|------------------|------------------|------------------------| | Represent a nickel, a dime, a quarter, a half-dollar, and a dollar in combinations of coins. | 230-232, 235-237 | 214-217, 220-221 | 82-83, 85 | | | Represent money by using the cent and dollar notations. | 228 | 212 | | | | Generate common referents for whole inches. | 136-138, 140-141, 149 | 120-122 | 46-47 | | | Use common referents to make estimates in whole inches. | 136-138 | 124-25, 133 | 48 | | | Use nonstandard units to measure the weight of objects. | 142-143 | 126-127 | 49 | | | Illustrate past and future dates on a calendar. | 218-219 | 203 | 79 | | | Represent dates in standard form (June 1, 2007, for example) and numeric form (6-1-2007, for example). | 204-205 | 188-189 | | | | Use Celsius and Fahrenheit thermometers to measure temperature. | N/A | | | | | Use survey questions to collect data. | | | | | # SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) FOR MATHEMATICS SERIES YABISÍ (SANTILLANA USA) – FIRST GRADE | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--------------------------------------|-----------------|-----------------|------------------|------------------------| | Predict on the basis of data whether | 284-285 | 268-269 | 101 | | | events are likely or unlikely to | | | | | | occur. | | | | | | | | | | | SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) for MATHEMATICS Grade 2 | CCSS |
Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|--|--------------------------------------|----------------------|------------------------| | Operations and Algebraic | | | | | | Thinking | | | | | | 2.0A | | | | | | Represent and solve problems | | | | | | involving addition and | | | | | | subtraction. | | | | | | 1. Use addition and subtraction | 27, 29, 41, 45-47, 62, 69, 71, 75, 82- | 11, 113, 25, 29, 31, 46, 53, 55, 59, | 17-18, 21, 23-24, 40 | Juego y repaso: 3, 10 | | within 100 to solve one- and two- | 83, 86, 114-115, 229 | 66-67, 70, 98-99, 213 | | | | step word problems involving | | | | | | situations of adding to, taking from, | | | | | | putting together, taking apart, and comparing, with unknowns in all | | | | | | positions, e.g., by using drawings | | | | | | and equations with a symbol for the | | | | | | unknown number to represent the | | | | | | problem. | | | | | | problem | | | | | | Add and subtract within 20. | | | | | | 2. Fluently add and subtract within | 44, 60-68-69, 229 | 28, 44 | | Juego y repaso: 4, 9 | | 20 using mental strategies. By the | | | | | | end of Grade 2, know from memory | | | | | | all sums of two one-digit numbers. | | | | | | Work with equal groups of | | | | | | objects to gain foundations for | | | | | | multiplication. | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|----------------------------|----------------------------|------------------|------------------------| | 3. Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by 2s; write an equation to express an even number as a sum of two equal addends. | 32-33, 230, 235-235 | 16-17, 214, 218-219 | 9, 13, 86-87 | | | 4. Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends. | 230-233, 236-237, 243, 247 | 214-217, 220-221, 227, 231 | 84-85, 90-91 | Juego y repaso: 12 | | Number and Operations in | | | | | | Base Ten 2.NBT | | | | | | Understand place value. | | | | | | 1. Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a. 100 can be thought of as a bundle of ten tens—called a "hundred." b. The numbers 100, 200, 300, 400, 500, 00, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens | 154-157, 165, 171, 184-158 | 138-141, 149, 155, 168-169 | 54, 58-59 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|--|--|-------------------------|------------------------| | and 0 ones). | | | | | | 2. Count within 1000' skip-count by 5s, 10s, and 100s. | 25, 30 | 9, 14 | 8 | | | 3. Read and write numbers to 1000 using base-ten numerals, number names, and expanded form. | 25, 27, 36-37, 150-153 | 9, 11, 134-137 | 6-7, 11, 54-55, 56, 71 | | | 4. Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons. | 34-35 (two-digit)
158-159, 164 | 142-143, 148 | 57 | | | Use place value understanding and properties of operations to add and subtract. | | | | | | 5. Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. | 26-27, 46-48, 50-53, 58-59, 67, 70-73, 76-77, 80 | 10-11, 30-32, 34-37, 42-43, 51, 54-
57, 60-61, 64 | 6, 14-17, 19, 22-25, 62 | Juego y repaso: 4, 9 | | 6. Add up to four two-digit numbers using strategies based on place value and properties of operations. | 56-57, 65 | 40-41, 49 | 18-19 | Juego y repaso: 6 | | 7. Add and subtract within 1000, using concrete models or drawings | 51, 168-173, 176-177, 180-181, 187-195 | 35, 152-157, 160-161, 165-165, 171-179 | 60-61, 63-70 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|------------------------|------------------------|------------------|------------------------| | and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds. | | | | | | 8. Mentally add 10 or 100 to a given
number 100-900, and mentally
subtract 10 or 100 from a given
number 100-900. | 169, 182 | 153, 166 | | | | 9. Explain why addition and subtraction strategies work, using place value and the properties of operations. | 26, 56, 63, 180 | 47, 164 | | | | Measurement and Data 2.MD | | | | | | Measure and estimate lengths in standard units. | | | | | | 1. Measure the length of an object
by selecting and using appropriate
tools such as rulers, yardsticks, | 206-207, 210, 227, 260 | 190-191, 194, 211, 244 | 77, 82 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|-----------------|-----------------|------------------|------------------------| | meter sticks, and measuring tapes. | | | | | | 2. Measure the length of an object twice, using length units of different lengths for the measurements; describe how the two measurements relate to the size of the unit chosen. | 210-213 | 194-197 | | | | 3. Estimate lengths using units of inches, feet, centimeters, and meters. | 210-213 | 194-197 | 75-76 | | | 4. Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit. | 207-209, 227 | 191, 193, 211 | 74-75 | | | Relate addition and subtraction to length. | | | | | | 5. Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem. | 261-263 | 245-247 | 96-97 | | | 6. Represent whole numbers as lengths from 0 on a number line | 234-235 | 218-219 | 86 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|-----------------------------------|--------------------------------|------------------|------------------------| | diagram with equally spaced points corresponding to the numbers 0, 1, 2, and represent whole-number sums and differences within 100 on | | | | | | a number line diagram. | | | | | | Work with time and money. | | | | | | 7. Tell and write time from analog and digital clocks to the nearest five | 108-113, 126, 129 | 92-97, 110, 113 | 38-39, 44-45 | | | minutes, using a.m. and p.m. | (Note: a.m. & p.m. was not used.) | | | | | 8. Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using \$ and ¢ symbols appropriate. Example: If you have 2 dimes and 3 pennies, how many cents do you have? | 131-141, 144-145, 147 | 115-125, 128-129, 131 | 46-51, 53 | | | Represent and interpret data. | | | | | | 9. Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. Show the measurements by making a line plot, where the horizontal scale is marked off in whole-number units. | N/A | | | | | 10. Draw a picture graph and a bar graph (with single-unit scale) to | 87, 149, 205, 273-279, 282-283 | 71, 133, 189, 257-263, 266-267 | 100-104, 106-107 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|--|---|------------------|-------------------------------| | represent a data set with up to four
categories. Solve simple puttogether, take-apart, and compare problems using information presented in a bar graph. | | | | | | Geometry 2.G | | | | | | Reason with shapes and their attributes. | | | | | | 1. Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes. | 66, 97-98, 101, 106, 248-257, 267-
268, 271 | 50, 81-82, 85, 90, 232-241, 251, 252, 255 | 30-32, 92-94, 99 | Juego y repaso: 13, 17, 19-22 | | 2. Partition a rectangle into rows and columns of same-size squares and count to find the total number of them. | 94-95, 97-100, 105-106, 262, 263,
271 | 78-79, 81, 84, 89, 90, 246-247, 255 | 32, 97 | | | 3. Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words <i>halves</i> , <i>thirds</i> , <i>half of</i> , <i>a third of</i> , etc., and describe the whole as two halves, three thirds, four fourths. Recognize that equal share of identical wholes need to have the same shape. | 92-102, 106 | 76-86, 90 | 30-37 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|--|----------------------------------|-------------------|------------------------| | Deleted Content Grade 2 | | | | | | Generate estimation strategies to determine the approximate number | 54-55, 78-79, 17-175, 183, 196, 197 | 39, 62-63, 158-159, 167, 180-181 | 17, 26-27, 64, 70 | | | of objects in a set of no more than 1,000 objects. | (Note: Estimation strategies in addition and subtraction.) | | | | | Interpret models of sharing equally (division) as repeated subtraction and arrays. | 236-239 | 220-223 | 88-90 | | | Generate strategies to round numbers through 90 to the nearest 10. | 54 | 38 | | | | Identify quantitative and qualitative change over time. | N/A | | | | | Analyze quantitative and qualitative change over time. | N/A | | | | | Analyze the three dimensional shapes spheres, cubes, cylinders, prisms, pyramids, and cones according to the number and shape of the faces, edges, corners, and bases of each. | 248-253, 271 | 232-237, 255 | 92 | | | Identify multiple lines of symmetry. | 258-259, 269 | 242-243, 253 | 94-95, 98 | Juego y repaso: 14 | | Use coins to make change up to a | 131-135 | 115-119 | 46-51, 53 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------|-----------------|------------------|------------------------| | dollar. | | | | | | Measuring volume, weight, and temperature. | 214-221 | 198-205 | 78-81, 83 | | | Measuring length in yards. | N/A | | | | | Create survey questions to collect data. | 147 | 131 | 103 | | | Infer trends in a data set as increasing, decreasing, or random. | N/A | | | | | Predict on the basis of data whether events are more likely or less likely to occur. | 280-281 | 264-265 | 105, 107 | | SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) for MATHEMATICS Grade 3 | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|------------------------------|------------------------------|------------------------------------|------------------------| | Operations and Algebraic Thinking 3.0A | | | | | | Represent and solve problems involving multiplication and division. | | | | | | 1. Interpret products of whole numbers, e.g., interpret 5 × 7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5 × 7. | 128-137 | 112-121 | 44-47 | | | 2. Interpret whole-number quotients of whole numbers, e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as 56 ÷ 8. | 156-162, 176 | 140-146, 160 | 56-58, 64 | | | 3. Use multiplication and division within 100 to solve word problems in situations involving equal | 131, 133, 137, 147, 155, 281 | 115, 117, 121, 131, 139, 265 | 46, 48, 51, 55, 57-58, 60, 65, 105 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|--|--|------------------------------|------------------------| | groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. | | | | | | 4. Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ? = 48, 5 = 2 \div 3, 6 \times 6 = ?.$ | 144-146, 152, 157 | 128-130, 136, 141 | 53-57 | | | Understand properties of | | | | | | multiplication and the relationship between multiplication and division. | | | | | | 5. Apply properties of operations as strategies to multiply and divide. Examples: If $6 \times 4 = 24$ is known, then $4 \times 6 = 24$ is also known. (Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by $3 \times 5 = 15$, then $15 \times 2 = 30$, or by $5 \times 2 = 10$, then $3 \times 10 = 30$. (Associative property of multiplication.) Knowing that $8 \times 5 = 40$ and $8 \times 2 = 10$ | 130-131, 138-143, 151, 160-161, 165, 168-171 | 114-115, 122-127, 135, 144-145, 149, 152-155 | 45, 49-50, 52, 55, 62-63, 65 | Juego y repaso: 14-15 | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|---|--|--------------------------------|------------------------| | 16, one can find 8×7 as $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 = 56$. (Distributive property.) | | | | | | 6. Understand division as an unknown-factor problem. For example, find 32 ÷ 8 by finding the number that makes 32 when multiplied by 8. | 156-157, 161, 163 | 140-141, 145, 147 | 56, 58-59 | | | Multiply and divide within 100. | | | | | | 7. Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers. | 126-127, 130-131, 138-143, 150, 156-157, 278-279, 286-287 | 110-111, 114-115, 122, 124-127, 134, 140-141, 262-263, 270-271 | 45, 49, 50-52, 54-57, 104, 108 | | | Solve problems involving the | | | | | | four operations, and identify and explain patterns in arithmetic. | | | | | | 8. Solve two-step word problems | N/A | | | | | using the four operations. | | | | | | Represent these problems using | | | | | | equations with a letter standing for | | | | | | the unknown quantity. Assess the reasonableness of answers using | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------------------------|-------------------------------|------------------|------------------------| | mental computation and estimation strategies including rounding. | | | | | | 9. Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends. | 48-49, 140-145 | 32-33, 124-129 | 14, 50-53 | | | Number and Operations in Base Ten 3.NBT | | | | | | Use place value understanding and properties of operations to perform multi-digit arithmetic. | | | | | | 1. Use place value understanding to round whole numbers to the nearest 10 or 100. | 58-59, 282-283 | 42-43, 266-267 | 20, 106 | Juego y repaso: 4 | | 2. Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. | 24-39, 61, 70-81, 89-101, 104-105 | 8-23,
45, 54-65, 73-85, 88-89 | 6-14, 24-37 | Juego y repaso: 6 | | 3. Multiply one-digit whole | 138-139, 166-167 | 122-123, 150-151 | 49, 61 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|------------------|------------------|------------------|------------------------| | numbers by multiples of 10 in the | | | | | | range 10–90 (e.g., 9 x 80, 5 x 60) | | | | | | using strategies based on place | | | | | | value and properties of operations. | | | | | | Number and Operations— | | | | | | Fractions 3.NF | | | | | | Develop understanding of | | | | | | fractions as numbers. | | | | | | 1. Understand a fraction $1/b$ as the | 178-183, 190-191 | 162-167, 174-175 | 66-67, 71-73 | Juego y repaso: 10 | | quantity formed by 1 part when a | | | | | | whole is partitioned into <i>b</i> equal | | | | | | parts; understand a fraction a/b as | | | | | | the quantity formed by <i>a</i> parts of | | | | | | size 1/b. 2. Understand a fraction as a | N. / A | | | 11 | | number on the number line; | N/A | | | Juego y repaso: 11 | | represent fractions on a number | | | | | | line diagram. | | | | | | inie diagram. | | | | | | a. Represent a fraction $1/b$ on a | | | | | | number line diagram by defining | | | | | | the interval from 0 to 1 as the | | | | | | whole and partitioning it into b | | | | | | equal parts. Recognize that each | | | | | | part has size 1/b and that the | | | | | | endpoint of the part based at 0 | | | | | | locates the number $1/b$ on the | | | | | | number line. | | | | | | | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------|-----------------|------------------|------------------------| | b. Represent a fraction a/b on a number line diagram by marking off a lengths $1/b$ from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line. | | | | | | 3. Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. | 184-189 | 168-173 | 68-69, 70, 73 | Juego y repaso: 9 | | a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. | | | | | | b. Recognize and generate simple equivalent fractions, e.g., $1/2 = 2/4$, $4/6 = 2/3$. Explain why the fractions are equivalent, e.g., by using a visual fraction model. | | | | | | c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form 3 = 3/1; recognize that 6/1 = 6; locate 4/4 and 1 at the same point of a number line diagram. | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|--|---|--|------------------------| | d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model. | | | | | | Measurement and Data
3.MD | | | | | | Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects. | | | | | | 1. Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram. | 112-115 (Note: Use a.m. and p.m. to tell time: 116-117.) | 96-99
(Note: Use a.m. and p.m. to tell time: 100-101.) | 38-39, 42-43 (Note: Use a.m. and p.m. to tell time: 40, 43.) | Juego y repaso: 7 | | 2. Measure and estimate liquid volumes and masses of objects using standard units of grams (g), | 214-221, 226 | 198-205, 210 | 80-83 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|-------------------|-------------------|------------------|------------------------| | kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. | | | | | | Represent and interpret data. | | | | | | 3. Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets. | 262-265, 273, 275 | 246-249, 253, 259 | 99-100, 103 | | | 4. Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters. | 202-207, 227 | 186-191, 211 | 74, 76, 84 | | | Geometric measurement: | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------|-----------------|------------------|------------------------| | understand concepts of area and relate area to multiplication and to addition. | | | | | | 5. Recognize area as an attribute of plane figures and understand concepts of area measurement. | 212-213 | 196-197 | 79, 85 | | | a. A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area. | | | | | | b. A plane figure which can be covered without gaps or overlaps by <i>n</i> unit squares is said to have an area of <i>n</i> square units. | | | | | | 6. Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units). | 212-213 | 196-197 | 79, 85 | | | 7. Relate area to the operations of multiplication and addition. | 212-213 | 196-197 | 79, 85 | | | a. Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths. | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|-----------------|-----------------|------------------|------------------------| | b. Multiply side lengths to find areas of rectangles with wholenumber side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning. c. Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths <i>a</i> and <i>b</i> + <i>c</i> is the sum of <i>a</i> × <i>b</i> and <i>a</i> × <i>c</i> . Use area models to represent the distributive property in mathematical reasoning. | | | | | | d. Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems. | | | | | | Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|---|---|---|------------------------| | area measures. | | | | | | 8. Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters. | 210-211 | 194-195 | 78
 | | Geometry 3.G | | | | | | Reason with shapes and their | | | | | | attributes. | | | | | | 1. Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories. | Flat: 230-231
Solid: 232-233
Congruent & Similar: 244-245 | Flat: 214-215 Solid: 216-217 Congruent & Similar: 228-229 | Flat: 86 Flat: 87 Congruent & Similar: 93 | Juego y repaso: 16-23 | | 2. Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the | 179-181, 185-186, 188-189, 305 | 163-165, 169-170, 289 | 66, 68, 70 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|------------------|------------------|------------------|------------------------| | whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as 1/4 of the area of the shape. | | | | | | Deleted Content Grade 3 | | | | | | Compare whole number quantities using is less than, is greater than, and is equal to and the symbols <, >, and =. | 54-55 | 38-39 | 18, 23 | | | Represent in word form whole numbers through nine hundred ninety-nine thousand. | 50-51 | 34-35 | 16 | | | Generate strategies to multiply whole numbers by using one single-digit factor and one multidigit factor. | 134-135, 284-285 | 118-119, 268-269 | 47, 106-107 | | | Analyze the magnitude of digits on the basis of their place value. | 46, 50-53, 56-57 | 30, 34-37, 40-41 | 15, 17, 19, 23 | | | Create numeric patterns that involve whole-number operations. | N/A | | | | | Apply procedures to find missing numbers in numeric patterns that involve whole-number operations. | | | | Juego y repaso: 2-3, 8 | | Illustrate situations that show change | N/A | | | | # SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) FOR MATHEMATICS SERIES YABISÍ (SANTILLANA USA) – THIRD GRADE | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|---|--|---------------------------------|------------------------| | over time as increasing. | | | | | | Identify specific attributes of circles: center, radius, circumference, and diameter. | N/A
(See Grade 4, Chapter 5, pp. 120-
121, 130) | (See Grade 4, Chapter 5, pp. 102-103, 112) | (See Grade 4, Chapter 5, p. 41) | | | Classify polygons, lines, line segments, angles, and triangles. | 238-239, 254-255
(Also, see Grade 4, Chapter 5) | 222-223, 238-239 | 90 | | | Exemplify points, lines, line segments, rays and angles. | 236-237, 246-249 | 220-221, 232-233 | 89, 94-95 | Juego y repaso: 13 | | Predict the results of one transformation of a geometric shape. | 230-231 | 214-215 | 87 | Juego y repaso: 16 | | Use the fewest possible number of coins when making change. | N/A | | | | | Recall equivalencies related to time and length 60 seconds = 1 minute and 36 inches = 1 yard. | 204-205, 208-209 | 188-189, 192-193 | 75, 77 | | | Apply a procedure to find the range of a data set. | 260-261 | 244-245 | 98 | | | Predict on the basis of data whether events are likely, unlikely, certain, or impossible to occur. | 266-271, 274 | 250-255, 258 | 101, 103 | | | Compare the benefits of using tables, | 260, 262-263 | 244, 246-247 | 99 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|-----------------|-----------------|------------------|------------------------| | bar graphs, and dot plots as representations of a given data set. | | | | | | Understand when the probability of an event is 0 or 1. | N/A | | | | SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) for MATHEMATICS Grade 4 | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|-----------------|-----------------|------------------|------------------------| | Operations and Algebraic | | | | | | Thinking 4.0A | | | | | | Use the four operations with | | | | | | whole numbers to solve | | | | | | problems. | 72.75 | F4.F7 | 22.22 | | | 1. Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations. | 72-75 | 54-57 | 22-23 | | | 2. Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison. | 165, 167, 169 | 147, 149, 151 | 57, 59 | | | 3. Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders | 184-185, 192 | 166-167, 174 | 67-68 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|----------------------------------|----------------------------------|------------------|------------------------| | must be interpreted. Represent | | | | | | these problems using equations | | | | | | with a letter standing for the | | | | | | unknown quantity. Assess the reasonableness of answers using | | | | | | mental computation and estimation | | | | | | strategies including rounding. | | | | | | | | | | | | Gain familiarity with factors and | | | | | | multiples. | | | | | | 4. Find all factor pairs for a whole | 72-75, 86, 89, 170-171, 188-189, | 54-57, 68, 71, 152-153, 170-171, | 22-25, 60, 65-66 | | | number in the range 1–100. | 210-211 | 192-193 | | | | Recognize that a whole number is a | | | | | | multiple of each of its factors. Determine whether a given whole | | | | | | number in the range 1–100 is a | | | | | | multiple of a given one-digit | | | | | | number. Determine whether a | | | | | | given whole number in the range | | | | | | 1–100 is prime or composite. | | | | | | | | | | | | Generate and analyze patterns. | | | | | | 5. Generate a number or shape | 36-37, 302 | 20-21, 284 | 11 | | | pattern that follows a given rule. | | | | | | Identify apparent features of the | | | | | | pattern that were not explicit in the rule itself. <i>For example, given the</i> | | | | | | rule "Add 3" and the starting | | | | | | number 1, generate terms in the | | | | | | resulting sequence and observe that | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|--|--|--------------------|------------------------| | the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way. | | | | | | Number and Operations in Base Ten 4.NBT Generalize place value understanding for multi-digit whole numbers. | | | | | | 1. Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that 700 ÷ 70 = 10 by applying concepts of place value and division. | 170-171, 178-179, 188-189, 194,
198 | 152-153, 160-161, 170-171, 176,
180 | 60, 65-66 | | | 2. Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons. | 26-31, 38, 68-69 | 10-13, 22, 50-51 | 6-8, 12 | Juego y repaso: 2 | | 3. Use place value understanding to round multi-digit whole numbers to | 34-35, 41, 56-57, 172-173, 190-191 | 18-19, 25, 38-39, 154-155 | 10, 18, 61, 69, 71 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|---------------------|--------------------|--------------------------------|------------------------| | any place. | | | | | | Use place value understanding and properties of operations to perform multi-digit arithmetic. | | | | | | 4. Fluently add and subtract multidigit whole numbers using the standard algorithm. | 48-55 | 30-37 | 14-17, 20-21 | | | 5. Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. | 162-169 | 144-151 | 56-59 | | | 6. Find whole-number quotients and remainders with up to
four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. | 92-95, 104, 182-187 | 74-77, 86, 164-167 | 30-31, 36-37, 64, 67-68, 70-71 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-------------------|-----------------|------------------|------------------------| | Number and Operations— Fractions 4.NF Extend understanding of fraction equivalence and ordering. | | | | | | 1. Explain why a fraction a/b is equivalent to a fraction $(n \times a)/(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions. | 208-211, 222, 225 | 190-191, 207 | 74-75 | | | 2. Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model. | 212-213, 222 | 194-195, 204 | 75 | | | Build fractions from unit | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|-------------------|-------------------|------------------|------------------------| | fractions by applying and | | | | | | extending previous | | | | | | understandings of operations on | | | | | | whole numbers. | | | | | | 3. Understand a fraction a/b with a | 214-221, 228, 252 | 196-203, 210, 234 | 76-80 | Juego y repaso: 5 | | > 1 as a sum of fraction $1/b$. | | | | | | a. Understand addition and | | | | | | subtraction of fractions as joining | | | | | | and separating parts referring to | | | | | | the same whole. | | | | | | the same whole | | | | | | b. Decompose a fraction into a sum | | | | | | of fractions with the same | | | | | | denominator in more than one way, | | | | | | recording each decomposition by | | | | | | an equation. Justify decompositions, | | | | | | e.g., by using a visual fraction | | | | | | model. <i>Examples: 3/8 = 1/8 + 1/8 +</i> | | | | | | 1/8; 3/8 = 1/8 + 2/8; 2 1/8 = 1 + 1 + | | | | | | 1/8 = 8/8 + 8/8 + 1/8. | | | | | | c. Add and subtract mixed numbers | | | | | | with like denominators, e.g., by | | | | | | replacing each mixed number with | | | | | | an equivalent fraction, and/or by | | | | | | using properties of operations and | | | | | | the relationship between addition | | | | | | and subtraction. | | | | | | | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|------------------|------------------|------------------|------------------------| | d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem. | | | | | | 4. Apply and extend previous understandings of multiplication to multiply a fraction by a whole number. | 210-211, 214-215 | 192-193, 196-197 | 75,81 | | | a. Understand a fraction a/b as a multiple of $1/b$. For example, use a visual fraction model to represent $5/4$ as the product $5 \times (1/4)$, recording the conclusion by the equation $5/4 = 5 \times (1/4)$. | | | | | | b. Understand a multiple of a/b as a multiple of $1/b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times (2/5)$ as $6 \times (1/5)$, recognizing this product as $6/5$. (In general, $n \times (a/b) = (n \times a)/b$.) | | | | | | c. Solve word problems involving | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|------------------|------------------|------------------|------------------------| | multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat 3/8 of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie? | | | | | | Understand decimal notation for fractions, and compare decimal fractions. | | | | | | 5. Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100. For example, express 3/10 as 30/100, and add 3/10 + 4/100 = 34/100. | N/A | | | | | 6. Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line | 232-233, 238-239 | 214-215, 220-221 | 82-83, 84, 88 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|--------------------------------|--|---------------------|------------------------| | diagram. | | | | | | 7. Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model. | 234-237 | 216-219 | 84, 86 | | | Measurement and Data | | | | | | 4.MD | | | | | | Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. | | | | | | 1. Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake | 138-147, 150, 158-159, 256-267 | 120-125, 128-129, 132, 140-141,
238-249 | 48-50, 52-53, 90-97 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|--|--|-------------------|------------------------| | as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), | | | | | | 2. Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. | 139, 145, 148-149, 152, 154 256-
257, 262-263 | 121, 127, 130-131, 134, 136-137, 238, 239, 244-245 | 49, 51, 53, 90-97 | | | 3. Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor. | 138-139, 150 | 120-121, 130 | 48-49 | Juego y repaso: 14 | | Represent and interpret data. | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------|-----------------|------------------
------------------------| | 4. Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection. | 269 | 251 | | | | Geometric measurement:
understand concepts of angle
and measure angles. | | | | | | 5. Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement: | 116-117, 133 | 98-99, 115 | 38-39 | | | a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a "one-degree angle," and can be used to measure angles. | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------|-----------------|------------------|------------------------| | b. An angle that turns through <i>n</i> one-degree angles is said to have an angle measure of <i>n</i> degrees. | | | | | | 6. Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure. | 116-117 | 98-99 | 38, 47 | | | 7. Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure. | 116-117 | 98-99 | | | | Geometry 4.G | | | | | | Draw and identify lines and angles, and classify shapes by properties of their lines and angles. | | | | | | 1. Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel | 112-117, 134 | 94-99, 116 | 38-39, 47 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|----------------------------------|------------------|------------------|------------------------| | lines, identify these in two-dimensional figures. | | | | | | 2. Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles. | 118-119, 124-125 | 100-101, 106-107 | 38, 43, 47 | | | 3. Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify linesymmetric figures and draw lines of symmetry. | 126-127 | 108-109 | 44, 46 | | | Deleted Content Grade 4 Apply divisibility rules for 2, 5, and 10. | 92-95 | 74-77 | 30-31 | | | Explain the effect on the product when one of the factors is changed. | 76-77 | 58-59 | 24 | | | Analyze the magnitude of the digits through hundredths on the basis of their place value. | N/A
(See Grade 3, Chapter 2.) | | | | | Illustrate situations that show | N/A | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|--|-----------------|------------------|--------------------------| | change over time as either increasing, decreasing or varying. | | | | | | Analyze the relationship between three-dimensional geometric shapes in the form of cubes, rectangular prisms, and cylinders and their two-dimensional nets. | 122-123 | 104-105 | 42 | | | Predict the results of multiple transformations of the same type—translation, reflection, or rotation on a two-dimensional geometric shape. | 128-129
(Also, see Grade 3, Chapter 10) | 110-111 | 45 | | | Represent two-dimensional shapes: trapezoids, rhombuses, and parallelograms and three-dimensional shapes: cubes, rectangular prisms, and cylinders. | 122-123 | 104-105 | 40, 42-43, 47 | | | Use transformation(s) to prove congruency. | 128-129 | 110-111 | 45 | | | Represent with ordered pairs of whole numbers the location of points in the first quadrant of a coordinate grid. | 286-287 | 268-269 | 102, 107 | Análisis de datos: 10-11 | | Illustrate possible paths from one | 286-287 | 268-269 | | Análisis de datos: 3, 7 | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|----------------------------|----------------------------|------------------|------------------------| | point t another along vertical and horizontal grid lines in the first quadrant of the coordinate plane. | | | | Juego y repaso: 7-9 | | Use appropriate tools to measure objects to the nearest unit: measuring length in quarter inches, centimeters, and millimeters; measuring liquid volume in cups, quarts, and liters; and measuring weight and mass in pounds, milligrams, and kilograms. | 138, 150, 1570158, 268-269 | 120, 130, 139-140, 250-251 | 48, 91 | | | Analyze the perimeter of a polygon. | N/A | | | | | Generate strategies to determine the area of rectangles and triangles. | 138-139 | 120-121 | 48 | | | Use Celsius and Fahrenheit thermometers to determine temperature changes during time intervals. | 143 | 125 | | | | Exemplify situations in which highly accurate measurements are required. | N/A | | | | | Compare how data-collection methods impact survey results. | 278-279 | 260-261 | 98 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|---------------------------|---------------------------|------------------|----------------------------------| | Interpret data in tables, line graphs, and bar graphs whose scale increments are greater than or equal to 1. | 280-281, 284-285, 298-299 | 262-263, 266-267, 280-281 | 99, 101, 106 | Análisis de datos: 9, 14-16 | | Organize data in tables, line graphs, and bar graphs whose scale increments are greater than or equal to 1. | 281, 285 | 263, 267 | 99, 101 | | | Distinguish between categorical and numerical data and match to graphs. | 280-281, 283, 285, 297 | 262-263, 265, 267, 279 | 99 | Análisis de datos: 2, 5, 8-9, 12 | | Predict on the basis of data whether events are <i>likely</i> , <i>unlikely</i> , <i>certain</i> , <i>impossible</i> , <i>or equally likely</i> to occur. | 292-293 | 274-275 | | | | Analyze possible outcomes for a simple event. | 294-295 | 276-277, 278 | 105 | | SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) for MATHEMATICS Grade 5 | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|------------------|------------------|------------------|------------------------| | Operations and Algebraic | | | | | | Thinking 5.0A | | | | | | Write and interpret numerical | | | | | | expressions. | | | | | | 1. Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. | 274-275, 282-283 | 248-249, 256-257 | 92, 95 | | | 2. Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as 2 × (8 + 7). Recognize that 3 × (18932 + 921) is three times as large as 18932 + 921, without having to calculate the indicated sum or product. | 274-275, 282-283 | 248-249, 256-257 | 92, 95-96 | | | Analyze patterns and relationships. | | | | | | 3. Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a | 237 | 215 | 81 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------------|---------------------|------------------|-------------------------| | coordinate plane. For example, given the rule "Add 3" and the starting number 0, and given the rule "Add 6" and the starting number 0, generate terms in the resulting sequences,
and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally | | | | | | why this is so. | | | | | | Number and Operations in
Base Ten 5.NBT | | | | | | Understand the place value system. | | | | | | 1. Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left. | 54-55 | 36-37 | 20 | | | 2. Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. | 82-83, 96-97, 108-109 | 62-63, 76-77, 88-89 | 30-31 | | | 3. Read, write, and compare decimals | 54-57, 69, 72 | 36-39, 51, 54 | 14-17, 19-21 | Lectura y escritura: 10 | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------|-----------------|------------------|------------------------| | to thousandths. | | | | | | a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392 = 3 \times 100 + 4 \times 10 + 7 \times 1 + 3 \times (1/10) + 9 \times (1/100) + 2 \times (1/1000)$. | | | | | | b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons. | | | | | | 4. Use place value understanding to round decimals to any place. | 58-59 | 40-41 | 15, 19 | | | Perform operations with multidigit whole numbers and with decimals to hundredths. | | | | | | 5. Fluently multiply multi-digit whole numbers using the standard algorithm. | 78-79, 92 | 58-59,72 | 20, 22-23, 26 | | | 6. Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or | 98-101 | 78-81 | 32-33 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|---------------------------------|---------------------------------|---------------------------|------------------------| | the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. | | | | | | 7. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. | 60-65, 84-85, 91, 102-105, 118 | 42-47, 64-65, 71, 82-85, 98 | 18-19, 2-25, 27-28, 34-35 | | | Number and Operations— | | | | | | Fractions 5.NF | | | | | | Use equivalent fractions as a | | | | | | strategy to add and subtract fractions. | | | | | | 1. Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2/3 + 5/4 = 8/12 + 15/12 = 23/12$. (In general, $a/b + c/d = (ad + bc)/bd$.) | 146-147, 150-153, 163, 166, 168 | 126-127, 130-133, 143, 146, 148 | 49, 51-52 | | # SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) FOR MATHEMATICS SERIES YABISÍ (SANTILLANA USA) – FIFTH GRADE | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------------------|-----------------------------|------------------|------------------------------| | 2. Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result $2/5 + 1/2 = 3/7$, by observing that $3/7 < 1/2$. | 132-133, 147, 151, 153, 162 | 112-113, 127, 131, 133, 142 | 49, 51, 44 | Proyectos y equipo: 7-8 | | Apply and extend previous understandings of multiplication and division to multiply and divide fractions. | | | | | | 3. Interpret a fraction as division of the numerator by the denominator $(a/b = a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3/4$ as the result of dividing 3 by 4, noting that $3/4$ multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 | 124-125, 128-129, 156-157 | 104-105, 108-109, 136-137 | 40, 42, 46, 54 | Lectura y escritura: 6-9, 12 | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------------|-----------------------|------------------|------------------------| | people each person has a share of size 3/4. If 9 people want to share a 50-pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie? | | | | | | 4. Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. | 124, 128-129, 154-155 | 104, 108-109, 134-135 | 40-42, 53 | | | a. Interpret the product $(a/b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $(2/3) \times 4 = 8/3$, and create a story context for this equation. Do the same with $(2/3) \times (4/5) = 8/15$. (In general, $(a/b) \times (c/d) = ac/bd$.) | | | | | | b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|-----------------|-----------------|------------------|------------------------| | fraction products as rectangular | | | | | | areas. | | | | | | 5. Interpret multiplication as scaling (resizing), by: | 129 | 109 | | | | a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. | | | | | | b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a/b = (n \times a)/(n \times b)$ to the effect of multiplying a/b by 1. | | | | | | 6. Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the | 154-155 | 134-135 | 53 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------|-----------------|------------------|------------------------| | problem. | | | | | | 7. Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. | 146-157, 161 | 136-137, 141 | 54, 57 | | | a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example,
create a story context for $(1/3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1/3) \div 4 = 1/12$ because $(1/12) \times 4 = 1/3$. | | | | | | b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div (1/5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div (1/5) = 20$ because $20 \times (1/5) = 4$. | | | | | | c. Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------|-----------------|------------------|-------------------------| | numbers by unit fractions, e.g., by | | | | | | using visual fraction models and | | | | | | equations to represent the problem. | | | | | | For example, how much chocolate will | | | | | | each person get if 3 people share 1/2 lb | | | | | | of chocolate equally? How many | | | | | | 1/3-cup servings are in 2 cups of raisins? | | | | | | ruisins: | | | | | | Measurement and Data | | | | | | 5.MD | | | | | | Convert like measurement units | | | | | | within a given measurement | | | | | | system. | | | | | | 1. Convert among different-sized | 172-181, 184 | 152-161, 164 | 58-63 | Proyectos y equipo: 15 | | standard measurement units within a | | | | 7 | | given measurement system (e.g., | | | | Lectura y escritura: 11 | | convert 5 cm to 0.05 m), and use the conversions in solving multi-step, real | | | | | | world problems. | | | | | | world problems. | | | | | | Represent and interpret data. | | | | | | 2. Make a line plot to display a data set | N/A | | | | | of measurements in fractions of | | | | | | a unit $(1/2, 1/4, 1/8)$. Use operations | | | | | | on fractions for this grade to solve | | | | | | problems involving information | | | | | | presented in line plots. For example, | | | | | | given different measurements of liquid | | | | | | in identical beakers, find the amount of | | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------------|-----------------------|------------------|------------------------| | liquid each beaker would contain if the total amount in all the beakers were redistributed equally. | | | | | | Geometric measurement:
understand concepts of volume and
relate volume to multiplication and
to addition. | | | | | | 3. Recognize volume as an attribute of solid figures and understand concepts of volume measurement. | 302-303, 306, 312 | 276-277, 280, 286 | 104-105 | | | a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. | | | | | | b. A solid figure which can be packed without gaps or overlaps using <i>n</i> unit cubes is said to have a volume of <i>n</i> cubic units. | | | | | | 4. Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. | 302-303, 311-312 | 276-277, 280, 285-286 | 104-105 | | | 5. Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume. | 302-303, 306, 311-312 | 276-277, 280, 285-286 | 104-105 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|-----------------|-----------------|------------------|------------------------| | | | | | P P | | a. Find the volume of a right | | | | | | rectangular prism with whole-number | | | | | | side lengths by packing it with unit | | | | | | cubes, and show that the volume is | | | | | | the same as would be found by | | | | | | multiplying the edge lengths, | | | | | | equivalently by multiplying the height by the area of the base. Represent | | | | | | threefold whole-number products as | | | | | | volumes, e.g., to represent the | | | | | | associative property of multiplication. | | | | | | absociative property of manufactions | | | | | | b. Apply the formulas $V = l \times w \times h$ and | | | | | | $V = b \times h$ for rectangular prisms to find | | | | | | volumes of right rectangular prisms | | | | | | with whole number edge lengths in | | | | | | the context of solving real world and | | | | | | mathematical problems. | | | | | | 5 | | | | | | c. Recognize volume as additive. | | | | | | Find volumes of solid figures | | | | | | composed of two non-overlapping right rectangular prisms by adding | | | | | | the volumes of the non-overlapping | | | | | | parts, applying this technique to solve | | | | | | real world problems. | | | | | | Table in the problems. | | | | | | Geometry 5.G | | | | | | Graph points on the coordinate | | | | | | 236-237, 243 | 214, 221 | | | |--------------|----------|----------------|-------------------| | 236-237, 243 | 214, 221 | | | | 236-237, 243 | 214, 221 | | | | | | 81, 85 | 243-244 | 221-222 | 85 | 2. | 43-244 | 43-244 221-222 | 43-244 221-222 85 | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |---|-----------------|-----------------|------------------|------------------------| | properties. | | | | | | 3. Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles. | 196-197 | 176-177 | | | | 4. Classify two-dimensional figures in a hierarchy based on properties. | 196-199 | 176-179 | 67-67,74 | | | Deleted Content Grade 5 | | | | | | Analyze the magnitude of a digit on the basis of its place value, using whole numbers and decimal numbers through thousandths. | 26-27, 28-31 | 10-11, 14-15 | 6-8 | | | Apply an algorithm to divide whole numbers fluently. | N/A | | | | | Understand the relationship among the divisor, dividend and quotient. | 96 | 76 | | | | Classify numbers as prime, composite, or neither. | 110-111 | 90-91 | 37 | | | Generate strategies to find the greatest common factor and the least common multiple of two whole | 130-131, 137 | 110-111 | 43 | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------|-----------------|------------------|------------------------| | numbers. | | | | | | Apply divisibility rules for 3, 6, and 9. | N/A | | | | | Analyze patterns and functions with words, tables and graphs. | N/A | | | | | Identify applications of commutative, associative, and distributive properties with whole numbers. | 78-79 | 58-59 | 20 | | | Analyze situations that show change over time. | N/A | | | | | Use appropriate tools and units to measure objects to the precision of one-eighth inch. | N/A | | | | | Use a protractor to measure angles from 0 to 180 degrees. | 194-195 | 174-175 | 66 | | | Apply formulas to determine the perimeters and areas of triangles, rectangles, and parallelograms. | 292-299 | 266-273 | 98-101 | Lectura y escritura: 5 | | Apply procedures to determine the amount of elapsed time in hours, minutes, and seconds in 24-hour period. | N/A | | | | | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------|-----------------|------------------|------------------------| | Understand the relationship between Celsius and Fahrenheit temperature scales. | N/A | | | | | Design a mathematical investigation to address a question. | 249 | 227 | | | | Analyze how data-collection methods affect the nature of the data set. | 224-229 | 202-207 | 76-79 | | | Apply procedures to calculate the measures of central tendency (mean, median, and mode) and interpret the meaning and application of these measures. | 238-239 | 216-217 | 77 | Proyectos y equipo: 12 | | Represent the probability of a single-stage event in words and fractions. | 240-241 | 218-219 | 83 | | | Conclude by the sum of the probabilities of the outcomes of an experiment must equal 1. | 240 | 218 | | | | Compare the angles, side lengths and perimeters of congruent shapes. | N/A | | | | | Classify shapes as congruent. | 200-201 | 180-181 | 69 | | | Translate between two-dimensional representations and three- | 208-209 | 188-189 | 73 | | # SOUTH CAROLINA CORRELATIONS COMMON CORE STATE STANDARDS (CCSS) FOR MATHEMATICS SERIES YABISÍ (SANTILLANA USA) – FIFTH GRADE | CCSS | Teacher's Guide | Student Edition | Student Workbook | Supplementary Material | |--|-----------------|-----------------|------------------|------------------------| | dimensional objects. | | | | | | Predict the results of multiple transformations. | 202-205 | 182-185 | 70-71 | | | Analyze shapes to determine line ad rotational symmetry. | 204-205 | 184-185 | 71 | |